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In a glance, we can perceive whether a stack of dishes will topple,
a branchwill support a child’s weight, a grocery bag is poorly packed
and liable to tear or crush its contents, or a tool is firmly attached to
a table or free to be lifted. Such rapid physical inferences are central
to how people interact with theworld andwith each other, yet their
computational underpinnings are poorly understood. We propose
a model based on an “intuitive physics engine,” a cognitive mecha-
nism similar to computer engines that simulate rich physics in video
games and graphics, but that uses approximate, probabilistic simu-
lations to make robust and fast inferences in complex natural scenes
where crucial information is unobserved. This single model fits data
fromfive distinct psychophysical tasks, captures several illusions and
biases, and explains core aspects of human mental models and com-
mon-sense reasoning that are instrumental to how humans under-
stand their everyday world.

To see is, famously, “to know what is where by looking” (ref. 1,
p. 3). However, to see is also to know what will happen and

what can be done and to detect not only objects and their loca-
tions, but also their physical attributes, relationships, and affor-
dances and their likely pasts and futures conditioned on how we
might act. Consider how objects in a workshop scene (Fig. 1 A and
B) support one another and how they respond to various applied
forces. We see that the table supports the tools and other items on
its top surface: If the table were removed, these objects would fall.
If the table were lifted from one side, they would slide toward the
other side and drop off. The table also supports a tire leaning
against its leg, but precariously: If bumped slightly, the tire might
fall. Objects hanging from hooks on the wall can pivot about these
supports or be easily lifted off; in contrast, the hooks themselves
are rigidly attached.
This physical scene understanding links perception with higher

cognition: grounding abstract concepts in experience, talking about
the world in language, realizing goals through actions, and detecting
situations demanding special care (Fig. 1C). It is critical to the
origins of intelligence: Researchers in developmental psychology,
language, animal cognition, and artificial intelligence (2–6) con-
sider the ability to intentionally manipulate physical systems, such
as building a stable stack of blocks, as a most basic sign of human-
like common sense (Fig. 1D). It even gives rise to some of our
most viscerally compelling games and art forms (Fig. 1 E and F).
Despite the centrality of these physical inferences, the compu-

tations underlying them in the mind and brain remain unknown.
Early studies of intuitive physics focused on patterns of errors in
explicit reasoning about simple one-body systems and were con-
sidered surprising because they suggested that human intuitions are
fundamentally incompatible with Newtonian mechanics (7). Sub-
sequent work (8, 9) has revised this interpretation, showing that
when grounded in concrete dynamic perceptual and action con-
texts, people’s physical intuitions are often very accurate by New-
tonian standards, and pointing out that even in the earlier studies,
the majority of subjects typically gave correct responses (10). Sev-
eral recent models have argued that both successes and biases in
people’s perceptual judgments about simple one- and two-body
interactions (e.g., judging the relative masses of two colliding point
objects) can be explained as rational probabilistic inferences in
a “noisy Newtonian” framework, assuming Newton’s laws plus
noisy observations (11–14).However, all of this work addresses only

very simple, idealized cases, much closer to the examples of in-
troductory physics classes than to the physical contexts people face
in the real world. Our goal here is to develop and test a computa-
tional framework for intuitive physical inference appropriate for
the challenges and affordances of everyday scene understanding:
reasoning about large numbers of objects, only incompletely ob-
served and interacting in complex, nonlinear ways, with an em-
phasis on coarse, approximate, short-term predictions about what
will happen next.
Our approach is motivated by a proposal first articulated by

Kenneth Craik (15), that the brain builds mental models that
support inference by mental simulations analogous to how engi-
neers use simulations for prediction and manipulation of complex
physical systems (e.g., analyzing the stability and failure modes of a
bridge design before construction). These runnable mental models
have been invoked to explain aspects of high-level physical and
mechanical reasoning (16, 17) and implemented computationally
in classic artificial intelligence systems (18–20). However, these
systems have not attempted to engage with physical scene un-
derstanding: Their focus on qualitative or propositional repre-
sentations, rather than quantitative aspects and uncertainties of
objects’ geometry, motions, and force dynamics, is better suited to
explaining high-level symbolic reasoning and problem solving. To
understand physics in the context of scene perception and action,
a more quantitative and probabilistic approach to formalizing
mental models is required.
Here we introduce such a framework, which exploits recent

advances in graphics and simulation tools, as well as Bayesian
cognitive modeling (21), to explain how people understand the
physical structure of real-world scenes. We posit that human
judgments are driven by an “intuitive physics engine” (IPE), akin to
the computer physics engines used for quantitative but approxi-
mate simulation of rigid body dynamics and collisions, soft body
and fluid dynamics in computer graphics, and interactive video
games. The IPE performs prediction by simulation and incorpo-
rates uncertainty about the scene by treating its simulation runs as
statistical samples. We focus on how the IPE supports inferences
about configurations of many rigid objects subject to gravity and
friction, with varying numbers, sizes, and masses, like those typical
in children’s playrooms, office desktops, or the workshop, in Fig.
1A. In a series of experiments we show that the IPE can make
numerous quantitative judgments that are surprisingly consistent
with those of probabilistic physics simulations, but also that it dif-
fers from ground truth physics in crucial ways. These differences
make the IPE more robust and useful in everyday cognition, but
also prone to certain limitations and illusions (as in Fig. 1F).

Architecture of the IPE. We propose a candidate architecture for
the IPE that can interface flexibly with both lower-level per-
ceptuomotor systems and higher-level cognitive systems for
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planning, action, reasoning, and language (Fig. 2A). At its core is
an object-based representation of a 3D scene—analogous to the
geometric models underlying computer-aided design programs
(Fig. 1B)—and the physical forces governing the scene’s dynamics:
how its state changes over time (Fig. 2A). This representation
quantitatively encodes a large number of static and dynamic
variables needed to capture the motions and interactions of many
objects. This may include objects’ geometries, arrangements, masses,
elasticities, rigidities, surface characteristics, and velocities, as well as
the effects of forces acting on objects due to gravity, friction, colli-
sions, and other potentially unobservable sources.
The IPE thus represents the world with a reasonable degree of

physical fidelity. However, three key design elements render it
distinct from an ideal physicist’s approach and more akin to an
engineer’s. First, the IPE is based on simulation: Rather than
manipulating symbolic equations to obtain analytic solutions, it
represents mechanics procedurally and generates predicted states
based on initial ones by recursively applying elementary physical
rules over short time intervals. Second, the IPE is probabilistic
rather than deterministic: It runs stochastic (Monte Carlo) simu-
lations (22) that represent uncertainty about the scene’s state and
force dynamics and is thereby robust to the noisy and incomplete
information provided by perception. Third, the IPE is inherently
approximate: In its mechanics rules and representations of objects,
forces, and probabilities, it trades precision and veridicality for

speed, generality, and the ability to make predictions that are good
enough for the purposes of everyday activities.
To make this proposal concrete and testable, we also need to

specify the nature of these approximations and how coarse or
fine grained they are. Here the IPE likely departs from engi-
neering practice: People’s everyday interactions with their sur-
roundings often have much tighter time constraints and more
relaxed fault tolerances, leading our brains to favor speed and
generality over the degree of precision needed in engineering
problems. Our initial IPE model thus adopts the simplest gen-
eral-purpose approximation tools we know of. We used the Open
Dynamics Engine (ODE) (www.ode.org) as a mechanism for
approximate rigid-body dynamics simulations and the most naive
Monte Carlo approach of black-box forward simulation (22) as
a mechanism for representing and propagating approximate
probabilities through these physical dynamics. The ODE repre-
sents objects’ geometries as polyhedra and their mass dis-
tributions by inertial tensors, and its simulations do not enforce
the conservation of energy or momentum explicitly, but only
implicitly via coarse event detection and resolution procedures.
Our model runs the simulator on multiple independent draws
from the observer’s probability distribution over scenes and
forces to form an approximate posterior distribution over future
states over time. Even within the range of speed–accuracy trade-
offs that our initial IPE model supports, we expect that people
will tend to adopt the cheapest approximations possible (see
SI Appendix: Approximations). The IPE may dramatically simplify
objects’ geometry, mass density distributions, and physical inter-
actions, relative to what the ODE allows; and instead of running
many Monte Carlo simulations, the IPE may encode probabilities
very coarsely by using only one or a few samples (as people do in
simpler decision settings) (23).
Our central claim is that approximate probabilistic simulation

plays a key role in the human capacity for physical scene un-
derstanding and can distinctively explain how people make rich
inferences in a diverse range of everyday settings, including many
that have not previously been formally studied. Given an appro-
priate geometric model (Fig. 1B) of the workshop scene in Fig. 1A,
the IPE can compute versions of many of the intuitive inferences
about that scene described above. Given a geometric model of the
scene in Fig. 1C, it can explain not only how we infer that the
stacked dishes are precarious, but also how we can answer many
other queries: Which objects would fall first? How might they
fall—in which direction, or how far? Which other objects might
they cause to fall? Everyday scenarios can exhibit great variety in
objects’ properties (e.g., their weight, shape, friction, etc.) and the
extrinsic forces that could be applied (e.g., from a slight bump to
a jarring blow), and our IPE model can capture how people’s
predictions are sensitive to these factors—including ways that go
beyond familiar experience. In Fig. 1C, for instance, we can infer
that a cast-iron skillet placed onto the dishes would be far more

Fig. 1. Everyday scenes, activities, and art that evoke strong physical intu-
itions. (A) A cluttered workshop that exhibits many nuanced physical proper-
ties. (B) A 3D object-based representation of the scene in A that can support
physical inferences based on simulation. (C) A precarious stack of dishes looks
like an accident waiting to happen. (D) A child exercises his physical reasoning
by stacking blocks. (E) Jenga puts players’ physical intuitions to the test. (F)
“Stone balancing” exploits our powerful physical expectations (Photo and
stone balance by Heiko Brinkmann).

B C DA

Fig. 2. (A) The IPE model takes inputs (e.g., perception, language, memory, imagery, etc.) that instantiate a distribution over scenes (1), then simulates the
effects of physics on the distribution (2), and then aggregates the results for output to other sensorimotor and cognitive faculties (3). (B) Exp. 1 (Will it fall?)
tower stimuli. The tower with the red border is actually delicately balanced, and the other two are the same height, but the blue-bordered one is judged
much less likely to fall by the model and people. (C) Probabilistic IPE model (x axis) vs. human judgment averages (y axis) in Exp. 1. See Fig. S3 for correlations
for other values of σ and ϕ. Each point represents one tower (with SEM), and the three colored circles correspond to the three towers in B. (D) Ground truth
(nonprobabilistic) vs. human judgments (Exp. 1). Because it does not represent uncertainty, it cannot capture people’s judgments for a number of our stimuli,
such as the red-bordered tower in B. (Note that these cases may be rare in natural scenes, where configurations tend to be more clearly stable or unstable and
the IPE would be expected to correlate better with ground truth than it does on our stimuli.)
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destabilizing than a paper plate or that placing these stacked
dishes near the edge of a table would be much less wise if there
were children running about than if the room were empty. Such
intuitions come naturally and (fortunately) do not require that we
experience each of these situations firsthand to be able to un-
derstand them. Together, these types of inferences constitute an
answer to the more general question, “What will happen?”, that
humans can answer across countless scenes and that can be read
off from the IPE’s simulations.

Psychophysical Experiments. Relative to most previous research on
intuitive physics, our experiments were designed to be more rep-
resentative of everyday physical scene understanding challenges,
similar to those shown in Fig. 1 and discussed above. These tasks
feature complex configurations of objects and require multiple
kinds of judgments in different output modalities and graded
(rather than simply all-or-none, yes-or-no) predictions, yet are still
constrained enough to allow for controlled quantitative psycho-
physical study. Our most basic task (Exp. 1) probed people’s
judgments of stability by presenting them with towers of 10 blocks
arranged in randomly stacked configurations (Fig. 2B) and asking
them to judge (on a 1–7 scale) “Will this tower fall?” under the
influence of gravity. After responding, observers received visual
feedback showing the effect of gravity on the tower, i.e., whether
and how the blocks of the tower would fall under a ground truth
physics simulation.
The critical test of our IPE account is not whether it can explain

every detail of how people respond in one such task, but whether it
can quantitatively explain the richness of people’s intuitions about
what will happen across a diverse range of tasks. Hence subse-
quent experiments manipulated elements of Exp. 1 to examine
whether the model could account for people’s ability to make
different predictions about a given scene (Exps. 2 and 4), their
sensitivity to underlying physical attributes such as mass (Exps. 3
and 4), and their ability to generalize to a much wider and more
complex range of scenes (Exp. 5).
Applying our IPE model to these tasks requires choices about

how to formalize each task’s inputs and outputs—how each stim-
ulus gives rise to a sample of initial object states and force dynamics
for the simulator and how the effects of simulated physics on this
sample are used to make the task’s judgment—as well as choices
about the specifics of the simulation runs. Although the “Will it
fall?” task primarily involved visual inputs and linguistic outputs,
later tasks (Exps. 2–5) examined the flexibility of the IPE’s in-
terfaces with other cognitive systems by adding linguistic inputs,
symbolic visual cues, and sensorimotor outputs. To allow the
same core IPE model to be testable across all experiments, we
made the following simplifying assumptions to summarize these
other interfaces.
We set the IPE’s input to be a sample from a distribution over

scene configurations, object properties, and forces based on ground
truth, but modulated by a small set of numerical parameters that
capture ways in which these inputs are not fully observable and
might vary as a function of task instructions. The first parameter, σ,
captures uncertainty in the observer’s representation of the scene’s
initial geometry—roughly, as the SD of a Bayesian observer’s
posterior distribution for each object’s location in 3D space, con-
ditioned on the 2D stimulus images. The second parameter, ϕ,
reflects the magnitude of possible latent forces that the observer
considers could be applied (e.g., a breeze, a vibration, or a bump) to
the objects in the scene, in addition to those forces always known to
be present (e.g., gravity, friction, and collision impacts). The third
parameter, μ, captures physical properties that vary across objects
but are not directly observable—specifically, the relative mass of
different objects—but other properties such as elasticity or surface
roughness could be included as well.
Given such an input sample, our IPE model simulated physical

dynamics to produce a sample of final scene configurations. In
some cases the objects moved due to gravitational or external
forces or ensuing secondary collisions, whereas in others they
remained at their initial state. The model’s output consists

of aggregates of simple spatial, numerical, or logical predicates
applied to the simulation runs, as appropriate for the task and
judgment (SI Appendix: IPE Model). For example, for the Will it
fall? query, we took the IPE’s output to be the average pro-
portion of blocks that fell across the simulation runs.
Each manipulation in Exps. 1–5 tested the IPE model in in-

creasingly complex scenarios, which the model accommodates by
adjusting its manipulation-sensitive input parameters or output
predicates; all manipulation-irrelevant model components are
fixed to previously fitted values. We also contrasted the model
with variants insensitive to these manipulations, to assess how
fully the IPE represents these physical, scene, and task features.
Finally, we explored several ways in which the human IPE might
adopt even simpler approximate representations.

Results
Exp. 1: Will It Fall? Exp. 1 measured each subject’s ðn= 13Þ Will it
fall? judgments about 60 different tower scenes, repeated six times
over separate blocks of trials (see SI Materials and Methods, Fig.
S1, and Table S1). Fig. 2C shows the correlation between the
model’s and people’s average judgments (ρ= 0:92½0:88; 0:94�,
where ½l; u� indicates lower/upper 95% confidence intervals) under
the best-fit input parameters: σ = 0:2, or 20% of the length of
a block’s shorter side, and ϕ= 0:2, corresponding to very small
applied external forces, on the scale of a light tap. Nearby values
of σ and ϕ also had high correlations because state and force
uncertainty influenced the model’s predictions in similar ways (Fig.
S3). The μ parameter was set to 1 because all objects had identical
physical properties. We analyzed subjects’ responses for improve-
ments across trial blocks and found no effects of either the amount
of feedback or the amount of practice (Fig. S7 and SI Appendix:
Analysis of Learning). We also replicated the design of Exp. 1 on
a new group of subjects ðn= 10Þ who received no feedback and
found their mean responses to be highly correlated with those in
the original feedback condition ðρ= 0:95½0:95; 0:95�Þ, confirming
that any feedback-driven learning played at most a minimal role.
To assess the role of probability in the IPE simulations, we also

compared people’s judgments to a deterministic ground truth
physics model (the same simulations that were used to provide
posttrial feedback). This ground truth model corresponds to a
variant of the IPE model where σ = 0 and ϕ= 0 (i.e., each simu-
lation is run with initial states identical to the true objects’ states
and uses no forces besides gravity, friction, and collisions). The
task was challenging for subjects: Their average accuracy was 66%
(i.e., percentage of their thresholded responses matching the
ground truth model), and their correlation with the ground truth
predictions was significantly lower (ρ= 0:64½0:46; 0:79�, P< 0:001;
Fig. 2D) than with the IPE model. This demonstrates the crucial
role of including state and force uncertainty in the model’s sim-
ulations and explains illusions like the surprisingly balanced stones
in Fig. 1F: The ground truth scene configuration is in fact bal-
anced, but so delicately that most similar configurations (and
hence most of the IPE’s probabilistic simulations) are unbalanced
and fall under gravity. We included an analogous illusory stimulus
in the experiment, a delicately balanced tower (Fig. 2B, red bor-
der) that in fact stands up under ground truth physics but that the
IPE model’s probabilistic simulations predict is almost certain to
fall. As predicted by the IPE model, but not the ground truth
variant, people judged this to be one of the most unstable towers
in the entire stimulus set (Fig. 2 C and D, red circle).
Is it possible that people’s judgments did not involve any mental

simulation at all, probabilistic or otherwise? We also tested an
alternative account in the spirit of exemplar-based models and
simple heuristics that have been proposed in previous studies of
physical judgments (8–11): that people might instead base their
judgments exclusively on learned combinations of geometric fea-
tures of the initial scene configuration (e.g., the numbers, posi-
tions, and heights of the objects; see Table S2) without explicit
reference to physical dynamics. This “feature-based” account
consistently fared worse at predicting people’s judgments than the
IPE model—sometimes dramatically worse (Fig. S4)—in Exp. 1
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and a controlled follow-up experiment (Exp. S1) (SI Appendix:
Model-Free Accounts) in which the towers were all of the same
height, as well as in Exps. 2–5 described below. This is not to claim
that geometric features play no role in physical scene understand-
ing; in SI Appendix: Approximations, we describe settings where
they might. However, our results show that they are not viable
as a general-purpose alternative to the IPE model.

Exp. 2: In Which Direction? To test the IPE model’s ability to explain
different judgments in different modalities, we showed subjects
ðn= 10Þ scenes similar to those in Exp. 1, but instead asked them
to judge the direction in which the tower would fall (Fig. 3A and
Fig. S2). The IPE model’s output predicate for this “In which
direction?” query was defined as the angle of the average final
position of the fallen blocks; input parameters (σ = 0:2, ϕ= 0:2)
and all other details were set to those used in modeling Exp. 1.
Model predictions were very accurate overall: Subjects’ mean di-
rection judgments were within ± 45° of the model’s for 89% of
the tower stimuli (Fig. 3B). As in Exp. 1, capturing uncertainty was
crucial: The circular correlation with people’s judgments was sig-
nificantly higher for the IPE model ðρcirc = 0:80½0:71; 0:87�Þ than
for the ground-truth (σ = 0, ϕ= 0) model (Fig. 3C; ρcirc =
0:61½0:46; 0:75�, P< 0:001). These results show how a single set of

probabilistic simulations from the IPE can account for qual-
itatively different types of judgments about a scene simply by
applying the appropriate output predicates.

Exps. 3 and 4: Varying Object Masses. To test the sensitivity of
people’s predictions to objects’ physical attributes and the IPE
model’s ability to explain this sensitivity, Exps. 3 and 4 used
designs similar to Exps. 1 and 2, respectively, but with blocks that
were either heavy or light (10:1 mass ratio, indicated visually by
different block colors; Fig. 3 D andG). We created pairs of stimuli
(“state pairs”) that shared identical geometric configurations, but
that differed by which blocks were assigned to be heavy and light
(Fig. 3 D and G) and thus in whether, and how, the blocks should
be expected to fall. Again the IPE model’s input parameters and
output predicates were set identically to those used in Exps. 1 and
2, except that the mass parameter, μ, could vary to reflect people’s
understanding of the ratio between heavy and light blocks’ masses.
At the best-fitting value fromExp. 3, μ= 8, model fits for Exp. 3 (Will
it fall? judgment; Fig. 3E, ρ= 0:80½0:72; 0:86�) and Exp. 4 (In which
direction? judgment; Fig. 3H, ρcirc = 0:78½0:67; 0:87�) were compa-
rable to those in Exps. 1 and 2, respectively; the true mass ratio
ðμ= 10Þ yielded almost identical predictions and fits. By contrast,
using the mass-insensitive ðμ= 1Þ model variant yielded significantly
worse fits for both Exp. 3 (Fig. 3F, ρ= 0:63½0:50; 0:73�, P< 0:001)
and Exp. 4 (Fig. 3I, ρcirc = 0:41½0:27; 0:57�, P< 0:001). Differences in
judgments about towers within each state pair also covaried signifi-
cantly for people and the IPE model in both experiments (Exp. 3,
ρ= 0:73½0:62; 0:81�; Exp. 4, ρcirc = 0:50½0:18; 0:75�), whereas for the
mass-insensitive model variants these correlations were 0 by defini-
tion. Together, these results show that people can incorporate into
their predictions a key latent physical property that varies across
objects (and is indicated only by covariation with a superficial color
cue), that they do so in a near-optimal manner, and that the same
IPE model could exploit the richer aspects of its scene representa-
tions to explain these inferences at a similar level of quantitative
accuracy to that for the simpler tasks of Exps. 1 and 2 in which all
objects were identical.

Exp. 5: Varying Object Shapes, Physical Obstacles, and Applied Forces.
Exp. 5 was designed to be a comprehensive and severe test of the
IPE model, evaluating how well it could explain people’s judg-
ments on a more novel task in much more complex and variable
settings—scenes with different sizes, shapes, numbers, and con-
figurations of objects, with variable physical constraints on objects’
motion due to attached obstacles and with added uncertainty
about the external forces that could perturb the scene. Each scene
depicted a table on which a collection of blocks were arranged
(Fig. 4 A and B), half of which were red and the other half of
which were yellow. Subjects ðn= 10Þ were asked to imagine that
the table is bumped hard enough to knock one or more of the
blocks onto the floor and to judge which color of blocks would be
more likely to fall off, using a 1–7 scale of confidence spanning
“definitely yellow” to “definitely red”. The 60 different scenes
were generated by crossing 12 different block configurations—
varying the numbers and shapes of the blocks and the numbers,
heights, and positions of the stacks in which they were arranged—
with five different tables, one with a flat surface and four others
each with two short obstacles rigidly attached to different edges
that interacted with the objects’motions in different ways (Fig. 4A).
Two conditions differed in what information subjects received about
the external bump: In the “cued” condition, a blue arrow indicated
a specific direction for which subjects should imagine a bump; in
the “uncued” condition, no arrow was shown and subjects had to
imagine the effects of a bump from any possible direction (Fig. 4B).
In the cued condition, each scene was shown with two different
bump cue directions (“cue-wise pairs”). In 10 initial trials, subjects
were familiarized with the task and the effects of a random bump
strong enough to knock off at least one block, using simpler scenes
for which the red–yellow judgment was obvious and the effect of the
bump (applied for 200 ms) was shown after each judgment. Anal-
ogous feedback was also shown after every fifth experimental trial.

B C

D E F

G H I

A

Fig. 3. (A) Exp. 2 (In which direction?). Subjects viewed the tower (Upper),
predicted the direction in which it would fall by adjusting the white line
with the mouse, and received feedback (Lower). (B) Exp. 2: Angular dif-
ferences between the probabilistic IPE model’s and subjects’ circular mean
judgments for each tower (blue points), where 0 indicates a perfect match.
The gray bars are circular histograms of the differences. The red line indi-
cates the tower in A. (C) The same as B, but for the ground truth model. (D)
Exp. 3 (Will it fall?: mass): State pair stimuli (main text). Light blocks are
green, and heavy ones are dark. (E) Exp. 3: The mass-sensitive IPE model’s vs.
people’s judgments, as in Fig. 2C. The black lines connect state pairs. Both
model and people vary their judgments similarly within each state pair (lines’
slopes near 1). (F) Exp. 4: The mass-insensitive model vs. people. Here the model
cannot vary its judgments within state pairs (lines are near vertical). (G) Exp. 4
(In which direction?: mass): State pair stimuli. (H) Exp. 4: The mass-sensitive IPE
model’s vs. people’s judgments, as in B. The black lines connect state pairs. The
model’s and people’s judgments are closely matched within state pairs (short
black lines). (I) Exp. 4: The mass-insensitive IPE model vs. people. Here again, the
model cannot vary its judgments per state pair (longer black lines).
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The IPE model was identical to that in Exps. 1 and 2 ðσ =
0:2; μ= 1Þ, except for two differences appropriate for this task.
To incorporate instructions about how the table is bumped, the
magnitude of imagined external forces ϕ was increased to a range
of values characteristic of the bumps shown during the famil-
iarization period. The model simulated external forces under a
range of magnitudes, varying in their effects from causing only a
few blocks to fall off the table to causing most to fall off. For the
uncued condition the model simulated all bump directions, whereas
for the cued condition it simulated only bumps with directions
within 45° of the cued angle (Fig. 4 C and D). The model’s output
predicate was defined as the proportion of red vs. total blocks
that fell off the table, averaged across simulations.
Model predictions were strongly correlated with people’s judg-

ments in both the uncued and the cued bump conditions (Fig. 4E,
ρ= 0:89½0:82; 0:93�, and Fig. 4G, ρ= 0:86½0:80; 0:90�, respectively).
Fits were both qualitatively and quantitatively better than for
model variants that did not take into account the obstacles (Figs.
4F, ρ= 0:68½0:51; 0:81�, P< 0:002; Fig. 4H, ρ= 0:64½0:47; 0:77�,
P< 0:001), the bump cues (Fig. 4I, ρ= 0:82½0:75; 0:87�, P< 0:2), or
either factor (Fig. 4J, ρ= 0:58½0:41; 0:72�, P< 0:001), suggesting
both factors played causal roles in the IPE model’s success. The
model could also predict the effects of different obstacles and bump
cues on people’s judgments, with correlations of ρ= 0:88½0:81; 0:93�
between people’s and the model’s obstacle-wise differences in the
uncued condition and ρ= 0:64½0:46; 0:77� between their cue-wise
differences in the cued condition. That the IPE model predicted
judgments for these variable and complex scenarios at such high
levels, comparable to the simpler experiments above, provides the
strongest evidence yet that our model captures people’s capacity for
rich mental simulations of the physical world.

Approximations. Whereas the IPE model tested above attempts to
represent scene structure, physical dynamics, and probabilities
faithfully, given the constraints of a simple simulation engine and
Monte Carlo inference scheme, the human IPE is likely bounded
by further resource constraints and may adopt even coarser

approximations. For example, instead of using many simulation
samples to represent a full posterior predictive distribution,
people might base their predictions on only very few samples.
We estimated the number of samples that contribute to a subject’s
judgment by comparing the variance in subjects’ responses to the
variance in the model’s responses, under the assumption that as
the IPE pools more samples its trial-by-trial variance will decrease,
and found that people’s judgments were consistent with having
been based on roughly three to seven stochastic simulation samples
(SI Appendix: Approximating Probabilities and Fig. S6 A–E). We
also compared IPE model variants that were limited to these small
sample sizes to the large-sample models tested above and found that
even these small sample sizes were sufficient to approximate well
the predictive probability distributions in our tasks (Fig. S6 F–J).
In other analyses, we found that people may fall back on non-
simulation–based heuristics when simulations would require too
much time and precision to be useful (SI Appendix: Approximating
Physics) and that biases in how people predict the motions of
nonconvex objects (10, 24) can be explained by an IPE that esti-
mates objects’ unknown mass distributions cheaply, using simplified
geometric priors. Although preliminary, these results suggest that
across a range of scenes and tasks, even a small number of coarse
probabilistic simulations over short time intervals can support
effective physical inferences and predict well people’s judgments.

Discussion
We proposed that people’s physical scene understanding can be
explained by a simulation-based IPE that we formalized and tested
in a wide range of experiments. This IPE model accounted well for
diverse physical judgments in complex, novel scenes, even in the
presence of varying object properties such as mass and uncertain
external forces that could perturb the scene. Variants of the IPE
model that were not sensitive to these physical differences consis-
tently fit less well, as did combinations of special-purpose geometric
features that did not model physics and had to be tailored to each
experiment (Fig. S4 and SI Appendix: Model-Free Accounts), further
supporting the case that human intuitions are driven by rich

Fig. 4. Exp. 5 (Bump?). (A) Scene stimuli, whose tables have different obstacles (T0–T4). (B) In the uncued bump condition, subjects were not informed about
the direction from which the bump would strike the scene; in the cued bump conditions, a blue arrowhead indicated the bump’s direction. (C) The disk plot
shows IPE model predictions per bump direction (angle) and ϕ (radius) for the stimulus in the image; the blue arrowheads/arcs indicate the range of bump
angles simulated per bump cue, and the green circle and arrowheads represent the uncued condition. Inset bar graphs show the model’s and people’s
responses, per cue/condition. (D) The same block configuration as in C, with different obstacles (T1). (E–J) IPE model’s (x axis) vs. people’s (y axis) mean
judgments (each point is one scene, with SEM). The lines in G–J indicate cue-wise pairs. Each subplot show one cue condition and IPE model variant (cor-
relations in parentheses, with P value of difference from full IPE): (E) Uncued, full IPE. (F) Uncued, obstacle insensitive (model assumes T0). (G) Cued, full IPE.
(H) Cued, obstacle insensitive. (I) Cued, cue insensitive (model averages over all bump angles). (J) Cued, obstacle and cue insensitive.
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physical simulations. That these simulations are probabilistic
was strongly supported by the systematic deviations of people’s
judgments from ground truth physical simulations (the σ = 0;ϕ= 0
model), as well as the existence of certain stability illusions (Fig.
1F and Fig. 2 B–D), all of which are naturally explained by the
incorporation of uncertainty. Other illusions and patterns of error
(Exp. S2 and Fig. S5) point to other ways in which these simu-
lations approximate physical reality only coarsely, yet effectively
enough for most everyday action-planning purposes. Probabilistic
approximate simulation thus offers a powerful quantitative model
of how people understand the everyday physical world.
This proposal is broadly consistent with other recent proposals

that intuitive physical judgments can be viewed as a form of prob-
abilistic inference over the principles of Newtonian mechanics (the
noisy Newton hypothesis) (11–14). Previous noisy Newton models
have been restricted to describing few judgments in simple scenarios
(e.g., one or two point-like objects moving in one or two dimen-
sions). Our work differs primarily in its focus on simulation—spe-
cifically rich, 3D, object-based simulations—as the means by which
physical knowledge is represented and probabilistic inference is
carried out. Our model can describe numerous judgments about
complex natural scenes, both familiar and novel, and offers a plau-
sible algorithmic basis for how people can make these judgments.
How else might people’s physical scene understanding work, if

not through model-based simulation? Much recent research in
computer vision is based on model-free, data-driven approaches,
which depend heavily on learning from past experience, either by
memorizing very large labeled sets of exemplars or by training
combinations of compact image features to predict judgments of
interest. We do not argue against a role for memory or learned
features in physical scene understanding, yet our results suggest
that combinations of the most salient features in our scenes are
insufficient to capture people’s judgments (SI Appendix: Model-
Free Accounts and Fig. S4). More generally, a purely model-free
account seems implausible on several grounds: It would have to
be flexible enough to handle a wide range of real-world scenes
and inferences, yet compact enough to be learnable from people’s
finite experience. It would also require additional control mech-
anisms to decide which features and judgment strategies are
appropriate for each distinct context, and it would be challenged
to explain how people perform novel tasks in unfamiliar scenes
or how their physical understanding might interface with their
rich language, reasoning, imagination, and planning faculties. In
contrast, model-based reasoning is more flexible and general

purpose and does not require substantial task-specific learning.
We know of no other approach that is a plausible competitor for
making physical inferences and predicting What will happen? in
everyday scenarios—let alone one that can quantitatively match
the IPE model’s consistency with people’s judgments across our
range of experiments. However, we encourage alternatives that
can compete with our account and have made our stimuli and
data freely available online for that purpose.
The generality of a simulation-based IPE goes well beyond the

settings studied here. A more realistic visual front end can be
added to capture people’s perceptual uncertainty (due to view-
point, lighting, or image occlusions; SI Appendix: Bayesian Vision
System and Fig. S8) and working memory and attentional con-
straints (25). In ongoing work we are finding that the same IPE
model can explain how people learn about the latent properties
of objects (e.g., mass and friction) from observing their dynamics,
how people infer attachment relations among objects in a scene,
and how people plan actions to achieve desired physical out-
comes. Its underlying knowledge of physics can also be extended
to make inferences about the dynamics of other entity types
(nonrigid objects, nonsolid substances, and fluids) that are not
handled by the ODE, but can be instantiated in more sophisti-
cated simulation engines such as Bullet or Blender.
More broadly, our work opens up unique directions for con-

necting people’s understanding of physical scenes with other
aspects of cognition. Probabilistic simulations may help explain
how physical knowledge influences perceived scene layouts (26–
28), movement planning (29), causal inferences (11, 12), language
semantics, and syntax (e.g., “force dynamics”) (4) and infants’
expectations about objects (2, 30). Most generally, probabilistic
simulation offers a way to integrate symbolic reasoning and sta-
tistical inference—two classically competing approaches to for-
malizing common-sense thought. The result is a framework that is
both more quantitative and more amenable to rigorous psycho-
physical experimentation than previous accounts of human mental
models and also better able to explain how people apprehend and
interact with the physical environments they inhabit.
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SI Materials and Methods
Subjects and Stimulus Apparatus. All subjects volunteered in re-
sponse to an advertisement postedon theMassachusetts Institute of
Technology (MIT) Brain and Cognitive Sciences human subjects
notification system (we did not collect background personal data,
but our subject population is composed of roughly half MIT stu-
dents or employees and half local community members). All gave
informed consent, were treated according to protocol approved by
MIT’s Institutional Review Board, and were compensated $10/h
for participation. All experimental sessions were 1 h long and took
place in 1 d, and subjects ran in exactly one session in one exper-
iment. All had normal or corrected-to-normal vision. Stimuli were
presented on a liquid-crystal display computer monitor, which
subjects free-viewed from a distance of 0.5–0.75 m. They indicated
their responses by depressing a key on the keyboard or by adjusting
the computer mouse and clicking to lock in their choice. The
numbers of subjects per experiment are listed in Table S1.

Exp. 1. Subjects were presented with virtual, 3D tower scenes
[rendered using Panda3D (1)], like those in Fig. 2B (main text) and
Fig. S1, which contained 10 rectangular blocks (each with 3D
aspect ratio 3:1:1). The blocks were stacked within a square col-
umn by a sequential random process such that when placed on the
tower, no single block would fall off of its support (although, when
later blocks were added, they might cause previously placed
blocks to fall). This design increased the complexity of the scenes
and judgments, by ensuring that pairwise comparisons of adjacent
blocks would not provide information about whether the towers
were stable or not. Subjects were asked, “Will this tower fall?”,
and responded on a 1–7 scale, in which 1, 4, and 7 corresponded
to “definitely will not fall”, “not sure”, and “definitely will fall”,
respectively, with intermediate numbers indicating intermediate
degrees of confidence. These stimuli were deliberately chosen to
be challenging and to evoke judgments across this graded scale, to
more clearly test the role of simulation and probability in physical
scene understanding. For more natural everyday scenes, people’s
judgments and the intuitive physics engine (IPE) model’s pre-
dictions would likely be more deterministic (more clustered at the
endpoints of this 1–7 scale) and also more objectively accurate
(more similar to ground truth physics).
Oneach trial, subjectsfirst viewed the scene for a 3-s “prephysics”

interval, in which gravity and other forces were absent (i.e., the
scene remained static regardless of whether the blocks would fall
when gravity was applied). During this interval the camera panned
180° around the tower so subjects could view the tower’s full 3D
geometry. (Pilot testing suggested that performance would be
similar, if more variable, for subjects presented with a single static
view.) At the end of this interval a cylindrical occluder dropped
vertically over the tower and the subject was able to make a judg-
ment under no time constraint. In Exp. 1 (feedback), feedback was
presented immediately after the subject responded in the form of
a 2-s movie in which gravity was turned on and either the tower
remained upright or some (or all) of its blocks fell; the floor also
changed color to distinguish between “fell” (red) and “remained
standing” (green). In Exp. 1 (no feedback), the next trial began
immediately after the subject responded.
Before the test session in Exps. 1–4, participants performed

a 20-trial familiarization session with a set of tower stimuli dif-
ferent from those in the test session and with feedback, to ac-
climate them to the task timing and judgment, the response keys,
and the parameters of the scene (e.g., the towers’ general appear-
ances and physical characteristics such as friction, etc.). Exp. 1’s

test session contained 360 trials: 60 towers (half of which would
fall under gravity), repeated six times each across different trial
blocks with randomized stimulus orderings and randomized trial-
by-trial tower block colors and initial camera angles.

Exp. 2. Exp. 2 was similar to Exp. 1, except that all towers always
fell under gravity (at least two blocks dropped). Subjects were
asked “Which direction will the tower fall in?” and reported
their judgments using the computer mouse by adjusting the
orientation of a line on the floor, which extended from the base
of the tower to the floor’s perimeter, to indicate their expecta-
tion of its dominant fall direction (Fig. 3A, main text). Exp. 2’s
test session contained 360 trials, consisting of 60 stimuli repeated
six times each in separate trial blocks, with the same random-
izations of stimulus ordering, block coloring, and initial camera
angles as in Exp. 1.

Exps. 3 and 4.Exps. 3 and 4 used a new set of tower scenes (Fig. 3 D
and G) that was similar to that in Exps. 1 and 2, except that half
of the blocks were 10 times heavier than the others. Blocks of
different masses were visually distinguished by a dark, stone-like
texture (heavy) and a pale green striped texture (light). As in
Exps. 1 and 2, subjects were asked Will the tower fall? (Exp. 3)
and Which direction will the tower fall in? (Exp. 4). The towers
were organized into “state pairs”: two towers whose geometries
(block positions and poses) were identical, but whose heavy/light
assignments were different. For some state pairs, the different
mass assignments caused very different outcomes with respect to
the model’s predictions. As in Exp. 1, half of the towers in Exp. 3
would fall under gravity; as in Exp. 2, Exp. 4’s towers always fell
under gravity. In both experiments there were 48 towers with
unique arrangements of blocks, each with two state-pair assign-
ments of heavy and light blocks, for a total of 96 stimuli. The test
sessions each contained 384 trials, consisting of the 96 stimuli
repeated 4 times each in separate trial blocks, with the same
randomizations as in Exps. 1 and 2.

Exp. 5. Exp. 5’s scenes depicted a table on which a collection of
blocks were arranged (Fig. 4A), half of which were red and the
other half of which were yellow. Subjects were asked, “If the
table were bumped, which color would be more likely to fall
off?”, and responded on a 1–7 scale in which 1, 4, and 7 corre-
sponded to “definitely yellow”, “not sure”, and “definitely red”.
Subjects were instructed to assume that the bump’s force was
great enough to knock off at least one block. There were 12
possible block configurations that varied in the numbers and
shapes of the blocks and the numbers, heights, and positions of
the stacks in which they were arranged. There were also five
different tables, one with a flat surface and four others with two
short walls rigidly attached to different edges, which were de-
signed to increase the complexity of the ensuing dynamics once
the table was bumped. The 60 scene stimuli included all possible
combinations of the 12 block configurations and five tables. We
ran two conditions that differed by what information was pro-
vided about the ensuing bump: In the “uncued” condition, no
additional information was provided about the bump; in the
“cued” condition, a blue arrowhead in the scene pointed in the
direction from which the bump would strike (Fig. 4B). Each
stimulus was shown six times (with randomized red/yellow group
assignments and viewing angles), two times in the uncued con-
dition and four times in the cued condition (two times each with
two different bump directions), for a total of 360 trials. Each
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block of 60 trials showed the stimulus from only one of the two
conditions, ordered “no cue”, “cue”, “cue”, “no cue”, “cue”, “cue”.
On each trial, the stimulus interval was 3 s, during which the
camera panned over a 90° arc; the scene remained unoccluded
during the response interval. After every fifth trial, feedback was
presented in which a force was applied to the table for 200 ms
with random magnitude but strong enough to cause at least one
block to topple and fall off the edge. In the bump cue condition,
the feedback’s actual bump matched the cued direction; in the
uncued direction the bump’s direction was randomized. Subjects
first performed a 20-trial familiarization session with feedback
on each trial to become acquainted with the task and the effects
of the bump. The familiarization stimuli contained different scenes
with fewer blocks in simpler arrangements, so that the judgments
were not challenging.

Exp. S1. Exp. S1 was almost identical to Exp. 1, except that the
towers were selected such that all were of the same height. There
were 432 experimental trials: 108 towers, repeated four times
each, and trials were divided into four trial blocks, with the same
randomizations over trial orderings, block colorings, and initial
camera angles as in Exp. 1. Correlations between subjects’ judg-
ments and IPE model predictions are shown in Fig. S4.

Exp. S2. Exp. S2 was identical to Exp. 2, except that subjects were
asked to judge “How far will the furthest block come to rest?”.
They reported their judgments using the computer mouse by
adjusting the radius of a circle on the floor, centered at the
tower’s base, to match the distance they expected the tower’s
blocks to come to rest. The model’s output predicate was defined
as the farthest point from the tower’s base on any block.

Data Analysis. In Exps. 1, 3, and 5, where people responded on a
1–7 scale, these judgments were rescaled linearly to lie between
0 and 1 and averaged across repetitions and subjects. We com-
pared the model’s responses with subjects’, using a Pearson
correlation. In Exps. 2 and 4 we computed the circular mean of
subjects’ directional responses across repetitions and subjects.
For Exps. 2 and 4, because judgments were angular, we used
circular correlations (2) to quantify their agreement; note that
circular correlation coefficient values are analogous but not di-
rectly comparable to Pearson correlations.
All correlation coefficients and 95% confidence intervals (CIs)

were estimated using a bootstrap resampling procedure with
10,000 resamplings. The coefficients were taken as the median of
the bootstrapped distribution; the lower and upper confidence
intervals were always the 2.5th and 97.5th percentiles. All P values
were estimated using a direct bootstrap hypothesis test over the
10,000 resamples (3).
In Exps. 2 and 4, for some towers, the model’s distribution of

predicted directions was dispersed broadly around the circle and
thus the model’s circular mean estimate was very unstable (single
samples could cause the response to shift by up to 180°) (Fig. S2).
In these cases the model was indecisive and its point estimates of
the direction of fall were not meaningful. We thus excluded those
towers for which less than 80% of the model’s distribution of
predicted directions fell in any one-half of the circle, which left 47
of 60 towers included in the analysis for Exp. 2 and 72 of 96 for
Exp. 4 (Fig. S2). In Exp. S2 we computed the mean of subjects’
radial responses across repetitions and subjects.
The reported F-scores comparing IPE model confidences in

Exp. S2 and Exp. 1 refer to a one-way ANOVA F-test statistic,
measuring how separable the model’s distributions of predictions
were across stimuli within each experiment. They were computed
as the ratio of the variance of per-stimulus prediction means over
the means of the per-stimulus prediction variances.

SI Appendix: IPE Model
Computational Theory. The model forms a judgment, Jq, by com-
puting the expected value of a physical property query, QqðS0:TÞ,
which is a function of the initial state ðS0Þ and the sequence of
future states ðS1:TÞ. The model’s knowledge about these states is
summarized as the Bayesian posterior probability distribution
given observed information about the states and latent forces
(IS0:ST and If ).
Definitions.

� St : Scene state at time, t.
� St0:t1 = ðSt0 ; St0+1; . . . ; St1−1; St1Þ : Sequence of scene states from
time t0 to t1.

� ft : Extrinsic force applied beginning at time t.
� ft0:t1 : Sequence of extrinsic forces applied from time t0 to t1.
� ISt : Observed information about St.
� If : Observed information about ft0:t1 .� ψð·Þ : Deterministic physical dynamics from t0 to t1, which maps
St0 to a new state at time St1 : St1 = ψðSt0 ; ft0 ; t1 − t0Þ. The force,
ft0 , is applied for a duration t1 − t0. The dynamics can be applied
recursively,

St2 =ψ
�
ψ
�
St0 ; ft0 ; t1 − t0

�
; ft1 ; t2 − t1

�
:

� We denote the repeated application of ψð·Þ from ðt0 : tnÞ as
Ψð·Þ,

Stn =ψ
�
. . .ψ

�
St0 ; ft0 ; t1 − t0

�
; . . . ; ftn− 1 ; tn − tn−1

�
=Ψ

�
St0 ; ft0:tn− 1 ; t0 : tn

�
:

� Qqð·Þ: Output predicate corresponding to a query, q, which
maps an initial ðS0Þ and a future sequence of scene states
ðS1:TÞ to a judgment, Jq =QqðS0:TÞ. In our experiments, the
queries were sensitive only to the initial and final scene states
(i.e., for Will the tower fall?, the query reflected how many
blocks dropped from t= 0 to t=T), and so Jq =QqðS0; STÞ.

Inputs. The model represents knowledge of St, using a probability
distribution, PrðStÞ, which, if ISt is available, will be a posterior
distribution defined by Bayes’ rule, PrðStjIStÞ= PrðISt jStÞPrðStÞ

PrðISt Þ . Sim-
ilarly, the model represents knowledge of ft0:t1 , using a probability
distribution, Prðft0 :t1Þ, or, if If is available, Prðft0:t1 jIf Þ. For brevity,
the remaining formulas assume observed information is available.
Physical inference. The probability of a future state, St+1, given
a previous state, St, PrðSt+1jSt; ftÞ= 1, for St+1 =ψðSt; ft; 1Þ, and
0 for any other value of St+1, because ψð·Þ is deterministic. The
model represents the distribution over initial and future states,
S0 and S1:T , as determined by physics:

Pr
�
S0:T jIS0 ; If

�
=

Z

f0:T − 1

PrðST jST−1; fT−1Þ . . .PrðS1jS0; f0Þ

PrðS0jIS0ÞPr
�
f0:T−1jIf

�
df0:T−1

=
Z

f0:T − 1

PrðψðST−1; fT−1; 1ÞjST−1; fT−1Þ . . .

PrðψðS0; f0; 1ÞjS0; f0ÞPrðS0jIS0Þ . . .
Pr
�
f0:T−1jIf

�
df0:T−1:

[S1]

In this work we focus on the influence that the latent forces,
f0:T−1, have on future scene states—not on the latent forces
themselves—which is why they can be integrated out.
When only S0 and ST are required, as is the case in the present

work, the intermediate times can be integrated out,
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Pr
�
ST ; S0jIS0 ; If

�
=

Z

f0:T − 1

Z

S1:T − 1

PrðST jST−1; fT−1Þ . . .PrðS1jS0; f0Þ

PrðS0jIS0 ÞPr
�
f0:T−1jIf

�
dS1:T−1df0:T−1

=
Z

f0:T − 1

PrðST jS0; f0:T−1ÞPrðS0jIS0ÞPr
�
f0:T−1jIf

�
df0:T−1

=
Z

f0:T − 1

PrðΨðSt0 ; f0:T−1; 0 :TÞjS0; f0:T−1Þ

PrðS0jIS0ÞPr
�
f0:T−1jIf

�
df0:T−1:

[S2]

Note that because ψð·Þ can be applied recursively,

PrðST jS0; f0:T−1Þ=PrðΨðS0; f0:T−1; 0 : TÞjS0; f0:T−1Þ:
Outputs. The model’s output judgment for a query, q, is

Jq =E
�QqðS0:TÞjIS0 ; If

�

=
Z

S0:T

QqðS0:TÞPr
�
S0:T jIS0 ; If

�
dS0:T ;

[S3]

where PrðS0:T jIS0 ; If Þ is defined in Eq. S1.
Again, as our experimental queries were sensitive only to S0

and ST ,

Jq =E
�QqðS0; STÞjIS0 ; If

�

=
Z

ST

Z

S0

QqðS0; STÞPr
�
ST ; S0jIS0 ; If

�
dS0 dST ;

[S4]

where PrðST ; S0jIS0 ; If Þ is defined in Eq. S2.

Experimental IPE Implementation. Inputs. As described in the main
text, the IPE model tested experimentally had three numerical
parameters, ðσ; μ;ϕÞ, which controlled the state uncertainty,
physical attributes, and latent force inputs to the simulation,
respectively. They were defined and implemented as follows.
The model’s state representation could be separated into the

geometric state, G, and the physical state, p: S= ðG;PÞ. In our
experiments,G included the numbers, positions, poses, and shapes
of the objects’ states; and P included the mass density of each
object, represented as the vector m, in addition to other physical
parameters such as coefficients of friction and elasticity that were
fixed across all studies to values typical for everyday wooden
blocks. Similarly, IS = ðIG; IPÞ, where IG represents observed in-
formation about G, e.g., the objects’ visually indicated geometry in
the image; and IP represents observed information about P, e.g.,
the objects’ visually indicated mass assignments in Exps. 3 and 4.
Because subjects viewed scenes from many viewpoints over a

continuous 180° span, and these viewpoints were randomly chosen
for each trial, we represented the model’s visual inference of the
initial scene geometry, G0, as a simple, one-parameter viewpoint-
invariant approximation to the Bayesian posterior,

PrðG0jIG0Þ≈ π
�
G0;G0; σ

�
;

which represents the distribution over G0 given the true geom-
etry, G0, and the parameter, σ, which represents the magnitude
of the posterior state uncertainty. The πð·Þ was defined by taking
the true geometry,G0, and adding horizontal, zero-mean Gaussian
noise (SD σ) to the ground truth object positions independently.
Because the noise could cause interobject penetrations, the

objects’ coordinates were then transformed by a deterministic
constraint-satisfaction procedure that selected the nearest con-
figuration for which no objects violated each others’ volumes.
This procedure ran very small time steps of the physics engine,
resetting the objects’ velocities to zero after each step, which
caused all that were detected as being in collisions to shift apart
until no collisions were detected. We evaluated the plausibility of
this viewpoint-invariant approximation ðπð·ÞÞ by comparing its
samples with those of a prototype Bayesian vision system that
we developed, which used Markov chain Monte Carlo (MCMC)
to sample directly from the Bayesian posterior of scene geome-
tries conditioned on specific subsets of images, under a likelihood
function defined by a graphics rendering package (SI Appendix:
Bayesian Vision System). Results were highly similar, in terms of
both the samples of scene geometries (Fig. S8 A–F) and the
predictions on our experimental tasks (Fig. S8 G and H). In
our simulations, σ could take 1 of 11 possible values,

σ ∈ f0:0; 0:05; 0:10; 0:15; 0:20; 0:25; 0:30; 0:35; 0:40; 0:45; 0:5g

(where the short width of one of the tower’s blocks in Exps. 1–4
was 1, and the cube-shaped block’s width in Exp. 5 was 2).
The model’s representation of objects’ mass densities m was

controlled by the parameter μ. In Exps. 3 and 4, which contained
heavy and light blocks, μ represented the scalar ratio between
their respective mass densities; in Exps. 1, 2, and 5, all blocks had
the same density, so μ= 1. The information provided by IP was
approximated as deterministically indicating which blocks were
heavier (in Exps. 3 and 4) or that all had the same density (in
Exps. 1, 2, and 5), and the model then used its assumption about
μ to set each block’s individual mass density. In Exps. 1, 2, and 5,
μ= 1; in Exps. 3 and 4 it could take 1 of 12 values,

μ∈ f0:25; 1:0; 2:0; 2:5; 3:2; 4:0; 5:0; 6:3; 8:0; 10; 13; 16g:

For tower scenes (Exps. 1–4), all objects in the scene were adjusted
so that the total mass was 2 kg. For Exp. 5 each block was 1 kg.
The model’s latent force dynamics, f0:T−1, represented possible

vibrations and bumps that could be applied to the scene (main
text). We approximated them as a horizontal force [angle θ and
magnitude ϕ (main text)], applied from t= 0 ms to t= 200 ms
(and no force after 200 ms) to the surface on which the objects
were situated; for simplicity we drop the 0 : T − 1 subscript and
refer to f0:T−1 as, f = ðθ;ϕÞ. The observation about the forces
could be separated into two terms, If = ðIϕ; IθÞ, where Iϕ reflected
language-based instructions like “If the table were bumped. . .”
(Exp. 5). When available (Exp. 5, bump cue condition), Iθ rep-
resented the cue’s indicated latent force direction; the model
assumed θ was uniform over the range ½Iθ − 45; Iθ + 45�. When Iθ
was unavailable, the model assumed θ was uniform over the
range [0, 360].
In Exps. 1–4, ϕ could take 12 possible values,

ϕ∈ f0:0; 0:2; 0:4; 0:6; 0:8; 1:0; 1:2; 1:5; 2:0; 2:5; 3:0g;

and in our analyses we fitted the best value from Exp. 1. Fig. S3
shows the correlations between model and human judgments for
a range of σ and ϕ values in Exp. 1. In Exp. 5 (the “Bump?” task),
ϕ could take 16 values,

ϕ∈ f22:0; 25:6; 29:2; 32:8; 36:4; 40:0; 43:6; 47:2; 50:8; 54:4; 58:0;
61:6; 65:2; 68:8; 72:4; 76:0g;

where, in Exp. 5’s scenes, ϕ= 22:0 usually caused only one or
a few blocks to fall off the table, and ϕ= 76:0 caused many or
almost all to fall off. The model’s judgment took the expectation
over all ϕ values.
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Physical simulation. For our experiments, the model’s judgment in
Eq. S4 was computed via a Monte Carlo approximation

JMC
q ≈

1
k

Xk
i= 1

Qq

�
ðG0; μÞðiÞ;Ψ

�
ðG0; μÞðiÞ; f ðiÞ; 0 : T

��
[S5]

that used the Open Dynamics Engine (4, 5) to approximate Ψð·Þ,
over a T that was always 2,000 ms with a step size of 1 ms, and
where k is the number of independent simulation samples, ini-
tialized by independently drawing values of S0 and f from the
approximate posterior distributions as described above. In Exps.
1–4, k= 48. In Exp. 5, k= 12, and only the values of S0 were
drawn independently; rather than sampling f, we computed pre-
dictions for 16 equally spaced values of θ, crossed with the 16
values of ϕ (Fig. 4 C–E).
Query definitions.All queries regarded an object as having “fallen”
if, between S0 and ST , its z coordinate was displaced downward
greater than 0.025 unit. For Exp. 5, objects were defined as
having “fallen off” the table if their z coordinate was less than
0 at time T (the table’s surface was at z= 0).
The queries corresponding to the four experimental tasks were

as follows:

� Exps. 1 and 3 (Will it fall?): QfallðS0; STÞ = the fraction of
objects that fell.

� Exps. 2 and 4 (In which direction?): QdirðS0; STÞ = the angle of
the center of mass of the fallen blocks, in the x; y plane. For
Qdir ’s Monte Carlo sum, we used the circular mean across the
angular query outputs.

� Exp. 5 (Bump?): QbumpðS0; STÞ = the ratio of red to total
blocks that fell off the table.

� Exp. S2 (How far?): QfarðS0; STÞ = the radius of the farthest
fallen block from the base of the tower, in the x; y plane.

Due to ambiguities and vagueness inherent in language, more
than one output predicate could be consistent with any given task
query. For example, although we represented answers to the Will
it fall? query as the average proportion of blocks that fell, other
possibilities (e.g., the proportion of simulations for which one or
more blocks fell or the proportion for which more than half of the
blocks fell) would give similar results.

SI Appendix: Model-Free Accounts
An alternative explanation for people’s physical scene un-
derstanding is that they do not possess some model of the world,
but instead use model-free methods that depend heavily on their
experienced interactions with the world. People have been ex-
posed to many stable and unstable arrangements of objects over
their lifetime, and perhaps when presented with a new scene
such as our experimental stimulus, they consult some stored
representation of similar scenarios they have previously experi-
enced and produce a response that reflects the outcomes of
those scenarios. Such stored representations might be exemplar
based, composed of individual examples of scene and outcome
pairs, or feature based, encoding their experiences as com-
pressed features—the gross shape of the scene, the number of
vertical elements, etc.—and a function that takes as inputs these
features and returns as output statistically dependent physical
outcomes. Either the features or the parameters of this input–
output function (or both) could be constructed on the basis of
experience. To what extent could one of these model-free methods
explain subjects’ performance in our experiments?
One reason to be skeptical of a model-free account is the lack of

significant practice effects over the course of our experiments (SI
Appendix: Analysis of Learning), which might be expected if
people’s judgments were driven primarily by data-driven learning
mechanisms.

However, the central argument for a model-based probabilistic
physical simulation mechanism over a primarily model-free
mechanism based on learning from experience is the former’s
generality. Although the same IPE model could be applied to
each new task by using a predicate that was appropriate for the
query and to each new scene type by adjusting its parameters to
reflect the objects’ physical attributes and the scene’s patterns of
applied forces, the extensive amount of variation across natural
settings means that no compact set of trained features or ex-
emplars is even applicable to all tasks or scenes.
Still, to formally evaluate an account based on memory or

learned features, we built separate feature models for the Will it
fall?, How far?, In which direction?, and Bump? tasks and fitted
their parameters to best predict subjects’ data in each exper-
iment, using ridge regression (a linear model that prevents
overfitting by subjecting the coefficients to an L2 penalty). The
features used are listed in Table S2. For each experiment, the
penalty parameter was selected through a cross-validated fitting
procedure on subjects’ data. This method is relatively generous
to a feature-based account because it allows the feature weights
to vary arbitrarily across experiments, taking on whatever values
best fits people’s performance in each particular experiment.
Because standard multivariate regression analysis methods are

not available for circular data, we report the best individual
circular correlation between people’s responses and any single
feature in the In which direction? tasks. In Exps. 3 and 4, some
geometric features implicitly took the blocks’ masses into ac-
count [e.g., FFð2Þ, height of the center of mass]. To grant these
features the ability to make judgments that were sensitive to
the heavy/light assignments, we generated features for a range
of assumed μ values and used those that best fitted people’s
judgments.
Across experiments, the IPE model fits were generally signif-

icantly better than those of the best feature-based models, often
dramatically so (Fig. S4). This was true even allowing for features
that were selected specifically for each task and multiple free
parameters that were tuned to maximize their fits to each ex-
periment separately.
The results of fitting the best feature-based account to each

individual experiment were as follows. In Exp. 1, across the
feedback and no-feedback conditions, one heuristic predictor, the
tower’s height [Table S2, HFð1Þ], was best correlated with sub-
jects’ responses (ρ= 0:75, 95% CIs [0.68, 0.81]), so we conducted
a controlled variant (Exp. S1) identical to Exp. 1 (feedback)
except with different subjects (n = 10) and 108 new towers (each
repeated over four blocks) that were all of the same height, to assess
performance when the most dominant geometric heuristic was
neutralized. The IPE, with parameters identical to those of Exp. 1
(σ = 0:2 and ϕ= 0:2), again had a significantly higher correlation
with people ðρ= 0:81½0:74; 0:87�Þ than the geometric heuristics
(ρ= 0:70½0:59; 0:78�, P< 0:001). In Exp. 2, the best geometric fea-
ture had a significantly lower circular correlation with people’s
circular-mean responses than the IPE (ρcirc = 0:39½0:21; 0:56�,
P< 0:001). In Exp. 3, the regression-fit mass-sensitive feature pre-
dictions (with best-fit μ= 6) had a correlation of ρ= 0:71½0:61; 0:79�
and the mass-insensitive features (with μ= 1) had a correlation of
ρ= 0:61½0:46; 0:72�, which were also both significantly lower than
that of the IPE model (P< 0:02 and P< 0:001, respectively).
The features’ state-pair differences (with μ= 6) correlation,
ρ= 0:54½0:34; 0:73�, was also significantly lower ðP< 0:03Þ (the
mass-insensitive features did not make different state-pair pre-
dictions). In Exp. 4, the best mass-sensitive feature [FDð6Þ, best-fit
μ= 16] and mass-insensitive feature [FDð6Þ, μ= 16] had corre-
lations of ρcirc = 0:43½0:28; 0:58� and ρcirc = 0:31½0:17; 0:45�, re-
spectively, which were both significantly lower than that of the
IPE model (P< 0:001 and P< 0:1). However, the state pair cir-
cular correlation between the IPE model and the subjects was
not significantly higher ðP< 0:07Þ than the feature correlation
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(ρcirc = 0:50½0:18; 0:75� vs. ρcirc = 0:25½0:066; 0:45�, respectively).
In Exp. 5, the regression-fit features had significantly lower
correlations than the IPE model did with people’s responses,
in both the uncued and the cued conditions, respectively
(ρ= 0:73½0:58; 0:85�, P< 0:01; ρ= 0:68½0:58; 0:77�, P< 0:001).
We do not claim that geometric features learned through ex-

perience play no role in physical scene understanding: In one
experiment, Exp. S2 (How far?), a simple feature was significantly
better than the IPE model at predicting people’s judgments.
Below (SI Appendix: Approximations) we further discuss why and
when features may be used instead of mental simulations. How-
ever, we argue against the sufficiency of a purely memory- or
feature-based account and in favor of a general capacity for
simulation, based on the IPE model’s distinctive ability to ex-
plain quantitatively the whole set of experimental results pre-
sented here, as well as people’s inferences across a wide range
of real-world scenes and tasks such as those in Fig. 1 and the ex-
amples discussed in main text under Architecture of the IPE. It is
difficult to imagine a set of features flexible enough to capture all
of these inferences, yet compact enough to be learnable from
people’s finite experience.

SI Appendix: Approximations
Our IPE model as tested so far is surely incomplete in key ways. It
is likely that people’s capacity to represent the full physical state
of a scene, to simulate the dynamics of many objects in motion
over time, and to maintain faithful representations of probabil-
ities is more limited–and also more adaptive—than our use here
of a simple physics engine running several dozen stochastic
samples. The human IPE likely trades off precision for effi-
ciency much more aggressively than engineers typically do. Peo-
ple may summarize the individual objects in a many-object scene
coarsely, substituting in aggregrate representations that approx-
imately capture how such “stuff” tends to behave. They may use
simplified shape representations, such as spheroids or convex
polyhedra, that allow multiobject interactions to be computed
more efficiently. The temporal resolution of the IPE’s simu-
lations may be low, potentially leading to errors and biases that
only more finely spaced time steps would be able to avoid. The
laws of physics embedded within the human IPE may not uphold
basic physical principles, such as the conservation of energy and
momentum, and the simulation may blend mechanics principles
that are objectively independent into combined rules; e.g., be-
cause friction is ever present, objects in simulated motion may
gradually but constantly lose energy and momentum over time.
The IPE may represent uncertain sets of possible states with only
a few samples or instead represent a state’s probability, using
a continuous-valued weight rather than through its frequency of
occurrence.
These approximations may have little effect in many everyday

contexts, where even short simulations based on coarse repre-
sentations of objects’ shapes and positions are sufficient to make
useful predictions. However, they could result in perceptual er-
rors or illusions with more complex scenes or more demanding
tasks, pointing to ways in which our model could be improved to
better capture the approximations and shortcuts people exploit.
The following subsections illustrate in more depth several types
of approximations that the human IPE may make and the role
they might play in people’s physical intuitions.

Approximating Physics.One kind of approximation is motivated
by the intrinsic difficulty of making certain kinds of judgments
via simulation in the presence of complex dynamics. The Open
Dynamics Engine (ODE) and other standard physics engines can
simulate highly nonlinear systems, such as many-body collisions,
for which accurate predictions over even short time intervals are
computationally intensive and probably beyond what the human
IPE can perform. Consider a bowling ball at the moment it leaves

the bowler’s hand: We can mentally extrapolate its path for sev-
eral seconds as it rolls down the lane, but the instant it strikes the
pins, the ensuing motions become unimaginably complex. The
same dynamics apply when a stack of blocks falls or is knocked
over, as in Exps. 1–5, but did not pose serious challenges there
because the judgments queried were mostly insensitive to colli-
sions occurring beyond the early stages of the simulation. To test
whether people might rely on alternatives to simulation in cases
where these factors matter more, we conducted a supplementary
study (Exp. S2), using the same tower stimuli of Exps. 1–2, but
instead asked subjects to predict “How far will the blocks come
to rest?”. This judgment depends sensitively on tracking each
block precisely until it comes to rest, often after multiple colli-
sions. Here the IPE model makes much less confident pre-
dictions (F-ratio of 66.34 vs. 172.17 in Exp. 1, where higher
values indicate greater separation between the model’s simu-
lated distributions across stimuli) (SI Appendix: Data Analysis),
and people’s judgments on this task were also much less accu-
rate, as assessed both by correlation with ground truth (ρ= 0:38
vs. ρ= 0:64½0:46; 0:79� in Exp. 1) and by correlation with the IPE
model (ρ= 0:71½0:56; 0:81� vs. ρ= 0:92½0:88; 0:94� in Exp. 1 using
the same parameter values) in Exps. 1 and 2. Intriguingly, in this
case a simple geometric feature—the height of the tower—was
correlated with the IPE model’s inferences and better predicts
people’s judgments ðρ= 0:93½0:87; 0:96�Þ than the model does
(Fig. S4). People may fall back on such learned features as
simple heuristics for predictions when complex dynamics make
mental simulation impractical, just as a bowler learns that tar-
geting the 1 and 3 pins from a slight angle predicts a strike even
though she cannot imagine how the pins will move to produce
that outcome.

Approximating the Scene. Another kind of challenge for mental
simulation can arise under even simple dynamics but with com-
plex object shapes. In our IPE model, as in most standard physics
simulation engines, predicting an object’s response to gravity or
other forces depends on representing its center of mass and
moments of inertia. These variables are easy to estimate for the
blocks in Exps. 1–5, with their cuboidal shape and uniform
density, but for objects whose mass is distributed in an unknown
way over a complex 3D volume, they likely exceed people’s
ability to estimate with much precision. People may use strongly
simplifying priors, such as taking an object’s mass to be uniformly
distributed over a coarse approximation to its shape (e.g., a cu-
boid, an ellipsoid, or a convex hull). This would be consistent
with recent reports that people can accurately judge the stability
of asymmetric objects when they are convex (6), while also ex-
plaining why people incorrectly predict the stability and dy-
namics of objects with more complex, nonconvex shapes (Fig.
S5): They expect a wheel rim will roll downhill at the same rate
as a filled disk (Fig. S5A) (7), when in fact it rolls more slowly,
and they are surprised to see the dragonfly in Fig. S5B apparently
defying gravity, when in fact it is balanced stably around its
center of mass (Fig. S5C).

Approximating Probabilities.There are several important questions
of approximation in our proposed IPE’s sample-based repre-
sentation of probabilities. How many simulation samples does
the human IPE use? How faithfully do these samples represent
probabilistic quantities of interest? We explored these questions
by examining the variance of subjects’ responses, which will de-
crease with the number of simulation samples that contribute to
each judgment, k (Eq. S5), in the same way that the (squared)
SEM in experimental statistics will decrease as the sample size is
increased. For each stimulus in each experiment, we computed
the across-subject response variances (or circular variances, in
Exps. 2 and 4) and model variances as follows. We first nor-
malized the subjects’ and model’s responses in Exps. 1, 3, and 5
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to be in [0, 1] so they would have common coordinates (note that
Exps. 2 and 4’s model and subject responses did not need to be
normalized because they were both already in radians). We then
shifted their values so that they would have a mean of zero across
repetitions for each stimulus to remove the component of vari-
ance due to mean differences. Fig. S6 A–E shows the relation-
ships between these model and subject response variances; the
colored lines correspond to the relationships between the var-
iances for different values of k (Fig. S6 legend for details). The
relationship between the model and subject variances favors an
effective value of k= 1 for Exps. 1–4 and k= 5 or 6 for Exp. 5.
However, these estimates are based on the assumption that the
sampling variance was the only source of trial-by-trial variance
and thus represents a lower bound: There are surely other sources
of variance that are typically present in psychophysical data, such
as general decision-making noise. This may be why in Exps. 1–4
the subjects’ variances are elevated above the k= 1 line. To sep-
arate the sampling variance from these other stimulus-independent
noise sources and better estimate the true value of k, we performed
the following linear regression analysis. If we assume that the
sampling variation is statistically independent of the other sources
of variance, then the variance in people’s responses is the sum of
these two variance components and the slope of the fit line will
correspond to 1

k, whereas the intercept will correspond to ω2, where
ω is the SD of the other noise sources. The estimated k and ω
values for Exps. 1–5, respectively, were

k1 = 4:8½2:2; 66�;ω1 = 0:27½0:25; 0:29�
k2 = 2:8½1:9; 5:1�;ω2 = 0:56½0:51; 0:60�
k3 = 4:5½2:9; 8:9�;ω3 = 0:21½0:19; 0:22�
k4 = 3:1½2:1; 5:4�;ω4 = 0:47½0:42; 0:51�
k5 = 7:4½4:8; 13�;ω5 = 0:09½0:07; 0:10�:

This suggests that subjects typically formed their judgments based
on 3–7 simulation samples per trial. A possible reason for the
small differences between Exps. 1–4’s k values of 3–5 and Exp. 5’s
of 7 is that Exp. 5’s model predictions included uncertainty in the
bump’s direction and magnitude, in addition to the state uncer-
tainty (σ) also present in Exps. 1–4: It may be that in such cases of
greater uncertainty the IPE increases its numbers of samples to
more accurately approximate the physical outcome. The differ-
ences between the ω terms in Exps. 1 and 3 and in Exp. 5 may
reflect different effects that the tasks’ demands caused in subjects’
decision processes (Exps. 2 and 4’s responses were in radians and
so not comparable to the other experiments’ ω terms).
That these estimated values of k were around 3–7 is consistent

with the “one and done” account of Vul et al. (8), which claims
that many judgments and behaviors might be the product of taking
a small number of probabilistic samples from an internal posterior
distribution. To examine how the number of samples affects the
IPE model’s ability to make accurate probabilistic inferences, for
each experiment we created several IPE model variants that ran
only a small number of samples and compared their judgments to
those of the original IPE model whose judgments were based on
many samples. Fig. S6 F–J shows that across experiments, the IPE
model needs only a small number of samples to make predictions
that correlate well with the predictions of the original IPE model;
the correlations associated with model variants that used the
(rounded) numbers of samples estimated above were 0.93, 0.83,
0.89, 0.84, and 0.93 for Exps. 1–5, respectively. This demonstrates
that for our tasks, small numbers of samples are generally suffi-
cient to make similar predictions to those of a model that has a
more complete representation of probabilities.
Besides the simple Monte Carlo methods that we used here,

there are other more sophisticated ways to use sampling in sim-
ulation to represent physical uncertainty over time. These are es-
pecially useful in cases when new observations are being continually

collected (unlike in most of our experimental tasks, where all
relevant observations are made at the beginning of each trial).
Sequential importance sampling and particle filtering can use time-
dependent samples that have weights associated with them, where
the weight is proportional to an estimate of the posterior proba-
bility of that sample’s state given the observations up to that point
in time. The unscented Kalman filter uses a procedure to select a
representative nonrandom subsample of states to which to apply
the deterministic physical dynamics, to capture uncertainty over
time. Future work should pursue this question of how exactly
samples are used to represent and update dynamically changing
probabilities within a simulation-based framework.

SI Appendix: Analysis of Learning
Across all experiments, our analyses treated the subjects’ data as
stationary and constant by collapsing across multiple stimulus
repetitions, yet subjects performed hundreds of trials with re-
peated stimulus presentations and often received feedback. One
possibility is that subjects arrived at or substantially improved
their behavior through learning over the course of the trials,
rather than drawing primarily on a fixed internalized model of
physics. We examined each subject’s responses for evidence of
practice or learning effects by computing their judgments’ dif-
ferences from the IPE model and its variants as a function of
trials completed (Fig. S7). Fig. S7 A and B shows subjects’ time-
averaged differences as a function of trial number for Exp. 1’s
feedback and no-feedback conditions, respectively; Fig. S7 C and
D shows the judgment differences averaged across subjects.
There appear to be at most negligible changes over the course of
the trials for most individual subjects, as well as for the average
over subjects. An almost-perfect correlation (ρ= 0:95, 95% CIs
[0.95, 0.95]) between subjects’ mean responses in Exp. 1’s no-
feedback and feedback conditions (Fig. S7E) also suggests that
feedback did little to alter people’s judgments.
We also fitted regression lines to every subject’s judgment

differences as a function of trials completed and found that the
largest shift in any single subject’s judgments away from the
model was +20%, whereas the largest shift toward any model
variant was −17% (mean −1.6%, SD 6.6%). Fig. S7 F–L shows
histograms of these slopes per experiment; most shifted by less
than 10%, which indicates that subjects’ responses were largely
constant across trials. Fig. S7M shows these histograms (for shifts
with respect to the probabilistic IPE model) pooled across all ex-
periments and subjects, as well as a bootstrap resampled set of all
experiments’ data with the trial orderings randomized to express
the hypothesis that there was no true shift in subjects’ responses
across trials. A bootstrapped hypothesis test of the difference be-
tween the empirically observed distribution of shifts and this no-
shift reference distribution was not significant ðP= 0:38Þ. Taken
together, these analyses suggest that feedback played a minimal
role and that there was little if any effect of practice or learning
across trials.

SI Appendix: Bayesian Vision System
Our IPEmodel uses a simplified input representation of the scene:
a sample of its 3D geometric state that approximates a Bayesian
posterior distribution on scenes’ given images. To explain physical
scene understanding more fully, however, we ultimately need to
capture all of the factors that govern how people infer underlying
scenes from observed images, including effects of viewpoint, oc-
clusion, and so on. Although a full treatment of the visual in-
ference problem is beyond our scope here and would stretch the
bounds of most conventional machine vision systems, here we
offer an initial attempt both to validate our model’s assumptions
about the input geometry distribution and as a proof of concept to
motivate future research integrating Bayesian vision with proba-
bilistic physical reasoning.
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We implemented an image-based vision system for approxi-
mating the Bayesian posterior distribution over G given IG by
MCMC in an inverse-graphics model and compared its judg-
ments (Fig. S8 D and F) to those of our IPE’s viewpoint-in-
variant, π-based samples (Fig. S8 C and E) for the tower stimuli
in Exps. 1 and 2 (Fig. S8 A and B). The system’s geometric state
estimateG was defined as the positions and poses of all 10 blocks
in the tower, and its observed evidence IG was three 256× 256
8-bit (256 grayscale levels) images of the tower rendered under
perspective projection (using OpenGL) from a series of three
viewpoints rotated by 45° and then filtered using a normalized
2D Gaussian blur kernel with x; y scale parameter values of 11
pixels. The blur kernel’s scale was selected so that the variance of
the Bayesian system’s samples would roughly match the view-
point-invariant model’s variances. The prior over G was assumed
to be uniform over all possible positions and poses of the blocks.
The likelihood (probability of the image data given the geo-
metric scene state) was defined as the product of per-pixel
normal distributions (whose SD was 128 grayscale levels) be-
tween the observed image and an OpenGL-rendered image of
the latent scene.
We used a Metropolis–Hastings (MH) sampling algorithm (9)

to draw 5,000 geometric state samples (Fig. S8 D and F), with

samples grouped into 10-sample scans. Within a scan, each
block’s state was updated once, and the order of block updates
was chosen uniformly with replacement, independently per scan.
The MH algorithm’s proposals consisted of updating each
block’s horizontal position, drawing a value from a horizontal
bivariate normal distribution (with a diagonal covariance matrix
whose SD terms were 0.2), and adding that vector to the block’s
current position, keeping its vertical position fixed. We initialized
the sampler’s latent state at the true state to minimize “burn-in”
overhead and additionally discarded the first 1,000 samples of
each run as burn-in as well. These simplifications make the sys-
tem not generally applicable for performing vision in arbitrary
scenes. However, they allowed us to conveniently draw approx-
imate posterior samples representing how people could parse
our experimental stimuli, under the assumption that we can
accurately perceive the numbers of objects and their general
positions.
Fig. S8 G and H shows that when the Bayesian system’s

samples are input to the IPE model, the resulting judgments are
highly correlated (Exp. 1, ρ= 0:90½0:84; 0:94�; Exp. 2 [circular],
ρ= 0:94½0:91; 0:97�) with judgments of the viewpoint-invariant
(π-based) model used in the main text.

1. CMU Entertainment Technology Center (2010) Panda3D. Available at www.panda3d.
org. Accessed October 7, 2013.

2. Fisher N, Lee A (1983) A correlation coefficient for circular data. Biometrika 70(2):327–332.
3. Efron B, Tibshirani R (1993) An Introduction to the Bootstrap (Chapman & Hall/CRC,

New York and London), Vol 57.
4. Smith R (2010) Open Dynamics Engine. Available at www.ode.org. Accessed October

7, 2013.
5. Baraff D (2001) Physically based modeling: Rigid body simulation. SIGGRAPH Course

Notes, Association for Computing Machinery SIGGRAPH 2:2–1.

6. Cholewiak SA, Fleming RW, Singh M (2013) Visual perception of the physical stability
of asymmetric three-dimensional objects. J Vis 13(4):12.

7. Proffitt DR, Kaiser MK, Whelan SM (1990) Understanding wheel dynamics. Cognit
Psychol 22(3):342–373.

8. Vul E, Goodman N, Griffiths T, Tenenbaum J (2009) One and done? Optimal decisions
from very few samples. Proceedings of the 31st Conference of the Cognitive Science
Society, eds Taatgen N, van Rijn H (Cognitive Science Society, Austin, TX), pp 66-72.

9. MacKay D (2003) Information Theory, Inference, and Learning Algorithms (Cambridge
Univ Press, Cambridge, UK).

Fig. S1. Example of tower stimuli from Exp. 1.
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Fig. S2. Exp. 2 IPE model’s decisiveness. Each ring plot shows a sample of one tower’s model-predicted directions. The towers are sorted by how concentrated
the predictions are (numbers indicate rank). The 47th tower and lower (blue) were included in the analysis but the 48th and higher (red) were not.

Fig. S3. Correlations between Exp. 1’s model and human judgments as a function of IPE parameters, σ (x axis) and ϕ (y axis). The green and orange boxes/lines
indicate the probabilistic and ground truth best fit parameters, corresponding to Fig. 2 C and D, respectively.

Fig. S4. Summary of model fits from Exps. 1–5 and Exps. S1 and S2. Bar graphs show the correlations (including 95% CIs) with people’s judgments for both the
IPE model and the best feature-based alternative account, across each experiment. Exps. 5uc and 5c refer to Exp. 5 uncued and cued conditions, respectively.
Different features were required to fit behavior in different experiments. The graph (Left) shows which sets of features were applicable (colored boxes) or
inapplicable (white boxes) to each experiment.
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Fig. S5. Physics illusions and errors may arise from how the IPE approximates objects’ dynamical properties. Moments of inertia along each object’s principal
axes are indicated by the length (inverse) of the red bars, centered at the estimated center of mass. (A) A wheel rim (leftmost object) has a different inertial
tensor than a disk (rightmost object), such that it rolls downhill more slowly, but these inertial tensors are nontrivial to calculate. Treating each object’s mass
distribution as uniform over its convex hull gives a cognitively plausible approximation in general and here predicts (as people naively expect) that the wheel
rim (middle object) has the same inertial properties and rolls at the same rate as the disk. (B) A toy dragonfly perches dramatically on its nose and is surprisingly
balanced. (C) A model dragonfly with a physically correct center of mass and inertial tensor (upper) remains balanced after 250 ms in a simulation, but
modeling it with the same convex-hull approximation as in A (lower) locates the dragonfly’s center of mass slightly behind its nose (as people do) and leads to
the intuitive expectation that it will tip from its perch.

Fig. S6. Analysis of the number of IPE simulation samples. The columns of subplots correspond to Exps. 1–5, respectively. (A–E) Each point indicates the
variance across human responses for a single stimulus (y axis) vs. the variance across model samples for that same stimulus (x axis). The blue dashed line (with
the greatest slope) indicates a one-to-one correspondence between the model’s sample variances and people’s judgment variances, which would be consistent
with each person’s judgment being based on a single simulation sample. If instead each person formed judgments by taking a mean across k> 1 samples
(drawn from the same probabilistic model), then we would expect the variances of people’s judgments to be smaller than the model’s sample variances by
a factor of k (analogous to the squared SEM). The other dashed lines, with decreasing slopes (1k, for k= 2 . . . 6), depict expected correspondences between the
human response variances and the model’s sample variances if human judgments were based on means of 2–6 simulation samples, respectively. The black solid
lines show best-fit regression lines, whose intercepts reflect stimulus-independent trial-by-trial variance due to sources other than sampling variability. (F–J) The
thick black line depicts the correlation (y axis) between the IPE model’s predictions based on k samples (x axis) and the model’s predictions with the full set of
samples from the original IPE; the gray ranges are 95% CIs (estimated by bootstrapped resampling of the k samples); at k= 48 samples the correlations
converge to 1. The vertical dashed line indicates the best-fit value of k estimated from the linear regression analysis (SI Appendix: Approximating Probabilities),
and the horizontal dashed line indicates the correlation level at this value of k.
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Fig. S7. Analysis of learning. (A) Individual subjects’ average (over 20-trial sliding window) response differences (percentage, y axis) from ground truth (red:
σ= 0, ϕ= 0) and probabilistic IPE model (blue: σ = 0:2, ϕ= 0:2) as a function of trial number (x axis) for Exp. 1’s feedback condition. The vertical dashed lines
indicate different trial blocks. (B) The same as A for Exp. 1’s no-feedback condition. (C) Average response differences across all subjects (not a sliding window)
for Exp. 1’s feedback condition. The overlaid colored lines are best-fit regression fits. (D) The same as C, but for Exp. 1’s no-feedback condition. (E) Correlation
between subjects’ average judgments (raw 1–7 responses, with SEM) in Exp. 1’s no-feedback condition (x axis) vs. Exp. 1’s feedback condition (y axis). (F)
Histogram of slopes (y axis) of best-fit regression lines fitted to individual subjects’ response differences from ground truth (red) and the probabilistic IPE model
(blue) for Exp. 1’s feedback condition. The slopes’ units are change in response differences (percentage) across the experimental session; 0.0 indicates no
change and −100% indicates a change from 100% error to 0% error. (G) The same as F for Exp. 1’s no-feedback condition. (H) The same as F for Exp. 1 (same
height). (I) The same as F for Exp. 2. (J) The same as F for Exp. 3. The blue and green bars are the slopes from fits to the mass-sensitive and mass-insensitive IPE
models, respectively. (K) The same as J for Exp. 4. (L) The same as F for Exp. 5. The bars are slopes from fits to the full IPE model. A–D and F–L show minor
changes in subjects’ response differences from either the ground truth or the probabilistic IPE model across trials, indicating minimal effects of practice or
learning. (M) Histograms of all slopes across experiments with respect to the probabilistic IPE model (blue) and the (rescaled) bootstrapped distribution of
slopes for subjects’ data with randomly permuted trial orderings (gray).
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Fig. S8. Bayesian vision system. (A and B) Two original tower images. (C and E) Viewpoint-invariant (π-based) scene samples. (D and F) Bayesian vision system’s
scene samples. (G) Correlation between Exp. 1’s model judgments for IPE model variants that input the Bayesian vision system’s scene samples (x axis) and the
viewpoint-invariant (π) samples used in the main text (y axis). (H) The same as G, but for Exp. 2.

Table S1. Numbers of subjects per experiment

Experiment no. Judgment No. subjects

1, feedback Fall? 13
1, no feedback Fall? 10
S1, same height Fall? 10
2 Direction? 10
3 Fall?, mass 11
4 Direction?, mass 10
5 Bump? 10
S2 Far? 10
Total 74
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Table S2. Geometric features

FFð·Þ Exps. 1 and 3 and Exps. S1 and S2, Will it fall?/How far?

FFð1Þ Tower’s height
FFð2Þ Height of the tower’s center of mass
FFð3Þ Minimum critical angle* of the tower
FFð4Þ Minimum critical angle across subtowers†

FDð·Þ Exps. 2 and 4, In which direction?
FDð1Þ x,y angle of minimum critical angle
FDð2Þ x,y angle of minimum critical angle across subtowers
FBð·Þ Exp. 5, Bump?
FBð1Þ Average distance from the table’s center
FBð2Þ Average x,y distance from the table’s center
FBð3Þ Average height
FBð4Þ Average distance from the nearest edge
FBð5Þ Average x,y distance from the nearest edge
FBð6Þ Minimum x,y distance from the nearest edge + height
FBð7Þ Minimum x,y distance from the nearest edge
FBð8Þ Like 1, except with maximum, instead of average
FBð9Þ Like 2, except with maximum, instead of average
FBð10Þ Like 3, except with maximum, instead of average
FBð11Þ Like 4, except with minimum, instead of average
FBð12Þ Like 5, except with minimum, instead of average
FBð13Þ Like 6, except with minimum, instead of average
FBð14Þ Like 7, except with minimum, instead of average

*Critical angle is defined as the angle of center-of-mass of the tower about
the nearest edge (in the horizontal plane) of the convex hull around the
tower’s base. Negative critical angles mean the center-of-mass is outside the
convex hull (more unstable), and positive values mean it is inside. For FB,
each property was computed over the red blocks and over all of the blocks,
and their ratio was used as the corresponding feature’s value.
†Subtower is defined as a disjoint (noncontacting) subset of the blocks in
a tower. Multiple subtowers existed in some stimuli as a natural consequence
of the random procedure by which towers were generated; these subtowers
were supported by the ground, but were not in contact with each other.
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